A Query Focused Multi Document Automatic Summarization

نویسندگان

  • Pinaki Bhaskar
  • Sivaji Bandyopadhyay
چکیده

The present paper describes the development of a query focused multi-document automatic summarization. A graph is constructed, where the nodes are sentences of the documents and edge scores reflect the correlation measure between the nodes. The system clusters similar texts having related topical features from the graph using edge scores. Next, query dependent weights for each sentence are added to the edge score of the sentence and accumulated with the corresponding cluster score. Top ranked sentence of each cluster is identified and compressed using a dependency parser. The compressed sentences are included in the output summary. The inter-document cluster is revisited in order until the length of the summary is less than the maximum limit. The summarizer has been tested on the standard TAC 2008 test data sets of the Update Summarization Track. Evaluation of the summarizer yielded accuracy scores of 0.10317 (ROUGE-2) and 0.13998 (ROUGE–SU-4).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focused multi-document summarization: Human summarization activity vs. automated systems techniques

Focused Multi-Document Summarization (MDS) is concerned with summarizing documents in a collection with a concentration toward a particular external request (i.e. query, question, topic, etc.), or focus. Although the current state-of-the-art provides somewhat decent performance for DUC/TAC-like evaluations (i.e. government and news concerns), other considerations need to be explored. This paper...

متن کامل

Feature expansion for query-focused supervised sentence ranking

We present a supervised sentence ranking approach for use in extractive summarization. Using a general machine learning technique provides great flexibility for incorporating varied new features, which we demonstrate. The system proves quite effective at query-focused multi-document summarization, both for single summaries and for series of update summaries.

متن کامل

A Query-Focused Multi-Document Summarizer

This paper presents our work on queryfocused multi-document summarization with the enhanced IS_SUM system. We focus on improving its lexical chain algorithm for efficiency enhancement, applying the WordNet for similarity calculation and adapting it to query-focused multi-document summarization. We present its performance in terms of its official DUC2007 evaluation results together with some oth...

متن کامل

Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning

Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...

متن کامل

Measuring Importance and Query Relevance in Topic-focused Multi-document Summarization

The increasing complexity of summarization systems makes it difficult to analyze exactly which modules make a difference in performance. We carried out a principled comparison between the two most commonly used schemes for assigning importance to words in the context of query focused multi-document summarization: raw frequency (word probability) and log-likelihood ratio. We demonstrate that the...

متن کامل

Multi-Document Summarization using Automatic Key-Phrase Extraction

The development of a multi-document summarizer using automatic key-phrase extraction has been described. This summarizer has two main parts; first part is automatic extraction of Key-phrases from the documents and second part is automatic generation of a multidocument summary based on the extracted key-phrases. The CRF based Automatic Keyphrase extraction system has been used here. A document g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010